sábado, 18 de maio de 2013

TESTE SUMATIVO Nº 5 - MAIO/2013

Enunciado e proposta de resolução

Versão A


Leia atentamente para que não tenha dúvidas quanto ao que se pede e tenha muito cuidado na interpretação dos enunciados. Tenha cuidado na apresentação do teste.

1.       Determine as projeções da reta de interseção, i, do plano oblíquo δ com o plano de rampa ρ.
Dados
o plano δ está definido por uma reta de maior declive, d;
a reta d contém o ponto P(-2;3;4);
as projeções, horizontal e frontal, da reta d fazem, com o eixo x, ângulos de 300, de abertura para a esquerda, e de 500, de abertura para a direita, respetivamente;
os traços, horizontal e frontal do plano ρ têm -5 de afastamento e 5 de cota, respetivamente.

2.       Determine, graficamente, a verdadeira grandeza da distância do ponto P ao plano oblíquo α.
Dados
– o ponto P pertence ao plano bissetor dos diedros ímpares (β1,3), tem 6 de abcissa e 8 de afastamento;
– o plano α é definido pelo ponto A(-1;4;2) e pela reta r;
– a reta r contém o ponto M(6;-6;9);
– o ponto F, traço frontal da reta r, tem 0 de abcissa e 6 de cota.

3.       Determine as projeções e a verdadeira grandeza (V.G.) da secção produzida por um plano de rampa ρ numa pirâmide quadrangular oblíqua, situada no 1º diedro.
Dados:
– o traço horizontal do plano de rampa ρ tem 10 cm de afastamento e o traço frontal tem 4 cm de cota;
– a pirâmide tem a base contida no plano horizontal de projeção;
– uma das diagonais do quadrado [ABCD] da base é o segmento [AC] que mede 7 cm e é perpendicular ao eixo x;
– o vértice A tem 4 cm de abcissa e 1 cm de afastamento;
– o vértice da pirâmide é o ponto V(1;1;6).
4.       Construa a representação axonométrica ortogonal de uma pirâmide hexagonal regular.
Ponha em destaque, no desenho final, apenas o traçado das arestas visíveis do sólido resultante.
Dados:
Sistema axonométrico:
– trimetria: a projeção axonométrica do eixo y faz ângulos de 1400 e de 1000 com as projeções dos eixos x e z, respetivamente.
Nota – Considere os eixos orientados em sentido direto: o eixo z, vertical, orientado positivamente, de baixo para cima, e o eixo x, orientado positivamente, da direita para a esquerda.
– o eixo do sólido está contido numa reta vertical;
– o ponto C (5,5; 5,5; 6) é o centro da base;
– duas arestas da base são paralelas ao eixo x;
– um vértice da base pertence ao plano coordenado de perfil yz;
– o vértice da pirâmide pertence ao plano coordenado horizontal xy.


Versão B


Leia atentamente para que não tenha dúvidas quanto ao que se pede e tenha muito cuidado na interpretação dos enunciados. Tenha cuidado na apresentação do teste.

1.       Determine as projeções da reta de interseção, i, do plano oblíquo δ com o plano de rampa ρ.
Dados:
o plano δ está definido por uma reta de maior inclinação, m;
a reta m contém o ponto P(-2;4;3);
as projeções, horizontal e frontal, da reta m fazem, com o eixo x, ângulos de 600, de abertura para a esquerda, e de 500, de abertura para a direita, respetivamente;
os traços, horizontal e frontal do plano ρ têm 4 de afastamento e -4 de cota, respetivamente.

2.       Determine graficamente a verdadeira grandeza (V.G.) do ângulo β formado entre a reta a e o plano α.
Dados:
– a reta a é paralela ao eixo x e tem 4 cm de afastamento e 3 cm de cota;
– o plano α contém a reta r definida pelos pontos A(0;2;4) e B(2;4;1,5);
– a reta r é uma das retas de maior declive do plano α.
3.       Determine a sombra própria e a sombra real projetada nos planos de projeção de um prisma hexagonal oblíquo, situado no 1º diedro.
Ponha em destaque quer o contorno da sombra real nos planos de projeção, quer as projeções do prisma.
Identifique, a traço interrompido, as linhas invisíveis, quer no sólido, quer na parte ocultada do contorno da sua sombra projetada nos planos de projeção.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as a tracejado ou com uma mancha de grafite clara e uniforme.
Nota – Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às respetivas projeções da direção luminosa, nas áreas de sombra projetada.
Dados:
– uma das bases pertence ao plano horizontal de projeção e a outra base tem 6 cm de cota;
– os centros das bases são os pontos O(3;4,5;0) e O’, com -3 de abcissa e 4,5 cm de afastamento;
– os lados dos hexágonos medem 3 cm e dois dos lados são paralelos ao eixo x;
– a direção luminosa é a convencional.
4.       Represente em isometria uma pirâmide triangular oblíqua, situada no 1º triedro.
Ponha em destaque, no desenho final, apenas o traçado das arestas visíveis do sólido.
Nota – Considere os eixos orientados em sentido direto: o eixo z, vertical, orientado positivamente, de baixo para cima, e o eixo x, orientado positivamente, da direita para a esquerda.
Dados:
– a base contida no plano coordenado xy;
– os pontos A(3;1;0) e B(2;7;0) são dois vértices do triângulo equilátero [ABC] da base;
– o eixo [QV] da pirâmide é paralelo ao plano coordenado xz e o vértice V tem abcissa nula e 6 cm de cota.


Sem comentários:

Enviar um comentário