1.
Determine os traços do plano π que
contém o ponto P e é paralelo ao plano α.
Dados:
–
o plano α é definido pelas retas
a e b;
– a reta a contém o ponto S (3; 5; 3);
– as projeções, horizontal e frontal, da reta a
fazem, com o eixo x, ângulos de 450, de abertura para a
direita, e de 300, de abertura para a esquerda, respetivamente;
– a reta b pertence ao plano bissetor dos
diedros ímpares, (β1,3), e a sua projeção frontal faz, com o
eixo x, um ângulo de 300 de abertura para a direita;
– o plano π contém o ponto P(–
6; 3; – 4).
2.
Represente pelas suas projeções
um prisma pentagonal oblíquo, situado no 1º diedro, de acordo
com os dados
abaixo apresentados.
Utilizando a direção luminosa convencional, determine a
sombra própria do prisma e a sua sombra real nos planos de projeção.
Identifique, a traço interrompido, a parte invisível da linha
separatriz de luz/sombra do sólido, na sombra própria, e as partes ocultadas do
contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e
projetada, preenchendo-as a tracejado ou com uma mancha de grafite, clara e
uniforme.
(Se optar pelo tracejado, deverá fazê-lo com
linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas
perpendiculares às respetivas projeções da direção luminosa, nas áreas de
sombra projetada.)
Dados:
– as bases são frontais;
– uma das bases é o pentágono [ABCDE], inscrito numa
circunferência com 3 cm de raio e centro no ponto O(0;2;6,5);
– o vértice A tem 3 cm de abcissa e 6,5 cm de cota;
– um dos vértices da outra base do prisma pertence ao plano horizontal
de projeção e tem 3 cm de abcissa;
– a altura do prisma é 4,5 cm
3.
Represente pelas suas projeções
um cilindro de revolução, de
acordo com os
dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a
sombra própria do cilindro e a sua sombra real nos planos de projeção.
Identifique, a traço interrompido, a parte invisível da linha
separatriz de luz/sombra do sólido, na sombra própria, e as partes ocultadas do
contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada,
preenchendo-as a tracejado ou com uma mancha de grafite, clara e uniforme.
(Se optar pelo tracejado, deverá fazê-lo com
linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas
perpendiculares às respetivas projeções da direção luminosa, nas áreas de
sombra projetada.)
Dados:
– as bases são horizontais;
– o ponto O (4; 7; 8) é o centro de uma das bases;
– a base de centro O’ tem 2 de cota;
– o raio das bases mede 4 cm.
4.
Desenhe a
verdadeira grandeza do ângulo
formado pelos planos α e β.
Dados:
– os planos α e β têm os seus pontos de cota e
afastamento nulos à distância de 10 cm;
– o plano β é
perpendicular ao bissetor dos diedros ímpares; o seu traço frontal tem a
abertura de 600 para
a esquerda e situa-se à direita de α;
silvestre
ResponderEliminarPedro Pereira
ResponderEliminarrui castro
ResponderEliminar