quinta-feira, 26 de janeiro de 2012

QUESTÃO DE AULA Nº 3

Represente, pelas suas projeções, um cone de revolução, de acordo com os dados abaixo apresentados.
Determine a sombra própria do cone e a sua sombra real nos planos de projeção, utilizando a direção luminosa convencional.
Identifique, a traço interrompido, a parte invisível da linha separatriz de luz/sombra, na sombra própria, e a parte ocultada do contorno, na sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as a tracejado ou com uma mancha de grafite, clara e uniforme.
Nota: Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às respetivas projeções da direção luminosa, nas áreas de sombra projetada.
Dados
– a base está contida no plano frontal ϕ (fi) e tem 4 cm de raio;
– o centro da base é o ponto O, que pertence ao plano bissetor dos diedros ímpares (β1,3) e tem 2 de abcissa e 8 de afastamento;
– o vértice é o ponto V, com 1 cm de afastamento.
A azul a sombra própria.
A vermelho a sombra real projetada nos planos de projeção.


2 comentários: